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SUMMARY 

Various tests have been carried out in order to compare the performances of several methods used to solve the non- 
symmetric linear systems of equations arising from implicit discretizations of CFD problems, namely the scalar 
advection4iffision equation and the compressible Euler equations. The iterative schemes under consideration 
belong to three families of algorithms: relaxation (Jacobi and Gauss-Seidel), gradient and Newton methods. Two 
gradient methods have been selected: a Krylov subspace iteration method (GMRES) and a non-symmetric 
extension of the conjugate gradient method (CGS). Finally, a quasi-Newton method has also been considered 
(Broyden). The aim of this paper is to provide indications of which appears to be the most adequate method 
according to the particular circumstances as well as to discuss the implementation aspects of each scheme. 
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1. INTRODUCTION 

Implicit time discretization of computational fluid dynamics (CFD) problems usually yield non- 
symmetric systems of equations. A large variety of methods are currently in use to solve this class of 
problems. The scope of this paper is to compare and evaluate several iterative techniques which have 
been used in the past to treat problems within this framework. A priori discarding any claim of 
exhaustiveness, the study has been focused on the consideration of classically used families of 
methods, identifying among each of these families the most conventional algorithm according to the 
recent literature. 

The first group of methods considered comprises the well-known classical relaxation methods 
(Jacobi and Gauss-Seidel). They do not require accurate preconditioning to provide satisfactory 
convergence and are easy to implement. 

The performance of preconditioned conjugate gradient techniques applied to symmetric, positive 
definite systems has been well assessed. Several extensions of these methods to the non-symmetric 
case have been proposed during the last few years. The reader is referred to References 1 and 2 for 
surveys of these methods using various preconditioning schemes (incomplete lower-upper (ILU) 
decompositions in the former and element-by-element (EBE) techniques in the latter). Following the 
results published by Joly and Eymard3 and van der V ~ r s t , ~  we retained the conjugate gradient squared 
method (CGS) proposed by Someveld’ from this algorithm family. Although it is not clear whether 
CGS is the best technique of its type (recently proposed algorithms such as van der Vorst’s stabilized 
biconjugate gradient method (Bi-CGSTAB)6 seem to yield smoother and faster convergence paths), we 
included CGS in the test set since it is a widely used method for the kind of applications under 
consideration. 
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Starting with Amoldi,' the Krylov subspace iteration techniques have also been widely used in past 
years to deal with non-symmetric matrices. They are based upon a minimization process which takes 
place in a series of Krylov subspaces whose dimension increases as the iteration process advances. 
These methods are closely linked to the gradient methods, both of them being exact from the 
theoretical viewpoint, since it has been proven that all of them converge to the exact solution in ajnite 
number of numerical operations. The generalized minimum residual method (GMRES) due to Saad 
and Schulz' appears to be one of the best-performing schemes of this class and has become quite 
popular in recent years within the CFD community. For an extensive survey of the performance of 
GMRES with various EBE preconditioning schemes the reader is referred to Reference 9. Further 
details on other Krylov subspace methods are given in References 5 and 8 and references cited therein. 

A third class of iterative methods will be considered based on Newton schemes. The underlying idea 
consists of treating the linear system to solve as a non-linear vector problem and then using the 
common techniques for non-linear equations for this particular problem, where the system matrix plays 
the role of the Jacobian of the non-linear equation. As outlined in Reference 10, the Broyden method" 
is a quasi-Newton method particularly suited to dealing with non-symmetric matrices that arise in CFD 
problems, so it has also been retained for comparison with the other schemes. 

The interest in this comparison exercise was raised during some discussions held with Messrs. 
Guillard and Nkonga from the French Institut National de Recherche en Informatique et Automatique 
(INRIA), with whom a fruitful, informal exchange of information in this field has been set-up. In this 
frame, some of the test problems were agreed with them. 

Concerning the model problems, we have considered a single scalar equation (the advection- 
diffision equation) discretized in time by a hlly implicit scheme and a system of equations (the 
compressible Euler equations) using a semi-implicit approach. In both cases 2D problems have been 
considered. 

The paper is organized as follows. The basic tested algorithms are presented in Section 2. A brief 
outline of the preconditioning techniques used is given in Section 2.1. The relaxation methods are 
recalled in Section 2.2. The gradient methods GMRES and CGS are described in Sections 2.3 and 2.4. 
Finally, the Broyden method is presented in Section 2.5. The considered numerical tests are described, 
with an outline of the discretization numerical scheme used for each model problem, in Section 3. 
Section 3.1 is devoted to the tests concerning the advection-diffision equation, while Section 3.2 deals 
with the compressible Euler equations. To end with, the conclusions of the study are summarized in 
Section 4. 

2. NUMERICAL METHODS 

The problem under consideration is the solution of a linear system of equations 

AX = b (1) 
coming from the implicit (or semi-implicit) time discretization of a hyperbolic partial differential 
equation or a system of partial differential equations. The matrix A depends on the spatial 
discretization selected as well as on the time integration scheme. Hyperbolic equations (or systems) 
typically lead to non-symmetric matrices. Several numerical methods to solve linear systems of this 
kind will be presented in this section and then compared in the following one. 

2.1. Preconditioning techniques 

An efficient way to facilitate the solution of problem (1) consists of replacing the original equation by 

B-IAX = B-lb. (2) 
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This procedure aims at improving the conditioning of the resulting matrix BK'A,  i.e. to concentrate 
the eigenvalues of the resulting matrix around unity. The matrix B-' is usually referred to as the 
preconditioning matrix. This modification of the spectral characteristics of the matrix helps in the 
numerical solution of the system (1). 
. Needless to say, the better the matrix B approximates A ,  the more efficient is the preconditioning. 
However, the preconditioning process should require a significantly lower computational cost when 
compared with the direct solution of (1) in order to justify the procedure. The simplest choice consists 
of taking the diugonal preconditioning 

for scalar problems and the corresponding block-diagonal preconditioning 

for vectorial problems. Another problem choice for the preconditioning matrix is the so-called 
incomplete lower-upper (ILU) decomposition, which is the non-symmetric counterpart of the 
incomplete Choleski decomposition." 

The lower-upperfactorization of a matrix is the most common way to numerically solve linear 
systems by direct methods. It is based on a result that states that any non-singular matrix A admits a 
unique factorization A = LU, where L is lower triangular with unit main diagonal and U is upper 
triangular. Once the factorization has been obtained, the solution is computed by successive back- 
substitutions 

y = L-lb, x = u-'y. ( 5 )  

This process of factorization can be seen as a kind of Gauss elimination on the matrix A. The LU 
decomposition is the most expensive part of the procedure from the computational point of view and 
becomes inpracticable for systems of moderately large size. 

The basic idea of the ILU method is to perform the factorization rejecting all entries in the product 
LU except for those belonging to a given sparsity pattern I! 

If we define the sparsity pattern P as the set of double subscripts ( i ,  j )  for which a,, # 0, the basic 
ILU factors verify 

(6)  
if ( i , j )  E P and i > j ,  

/ILU r/ = 1 = # 0 O otherwise. 
Lu # 0 if ( i , j )  E P and i < j ,  4 { = 0 otherwise, 

In particular, we note that given a matrix A which has the same fill-in pattern of its triangular factors 
(e.g. banded matrices), the corresponding ILU and LU decompositions are equal. 

There are other ways to select the sparsity pattern P: For instance, one could select only those entries 
where the absolute value of the system matrix entry a,, exceeds a prescribed value or one could choose 
a banded sparsity pattern. However, the aim of this study is to compare iterative strategies rather than 
preconditioning techniques, so only the original ILU method will be retained. 

Both full LU and ILU factorizations can be performed blockwise for problems coming from the 
discretization of systems of partial differential equations. Division by a scalar entry in the pointwise 
version is then just replaced by LU back-substitution of the corresponding block, whose factorization 
has to be kept in memory. 

The algorithms used to carry out the ILU decomposition as well as the ILU back-substitution depend 
on the stockage strategy adopted for the matrix, which tums out to be also dependent on the expected 
size of the system. For very large systems the in-core storage of the matrix is no longer possible and 
one has simply to recompute each entry ad when needed. For a detailed description of a class of such 
algorithms the reader is referred to Reference 1, where a study on the performances of several 
incomplete decompositions according to different sparsity patterns has also been made. 
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2.2. Standard relaxation methods: Jacobi and Gauss-Seidel 

The Jacobi and Gauss-Seidel relaxation methods are based on so-called additive splittings of the 
system matrix A, i.e. 

A = S - P ,  (7) 

SX = Px -k b,  (8) 

xk+' = S-' Pxk + S-'b.  (9) 

where S is a matrix whose inverse is easy to obtain. The original system (1) is then equivalent to 

which leads to the iterative strategy 

The resulting iterative method will converge to the solution independently of the initial guess xo if the 
spectral radius p of the matrix S-'P verifies p(S- ' P )  < 1 (see e.g. Reference 13 for a formal proof). 

The Jacobi method consists of taking 

S = diag(A) = D, (10) 

which implies a matrix P given by 

With this splitting, equation (9) yields the iterative procedure for the Jacobi method, which, denoting 
the iteration counter by a superscript and the vector component as a subscript, reads 

a,,$+' = 

a224+' = -a214 

-a124  - a& * . - ainG + bi, 
- a234 . * ' - a2,4 + b2, 

(12) 

an&+' = -an14 - an24 - an34 . . . + bn- 

The Gauss-Seidel method comes from another selection of the matrices S and P Defining the 
triangular matrices U (upper) and L (lower) as 

av, if i < j ,  
0 ,  otherwise, otherwise, uy = 

one can take S = D + L and P = - U, thus yielding the iteration scheme 

a,,+' = -a124 - a134 . . . - aln4 + b,, 

a&+' = -a21$+' * . . - ~ 2 ~ 4  + b2, - a234 

a,,G+' = -an14+' - a n2 2+' 2 - a,&+' . . . + bn. 

Equations (1 2) and (1 4) express the pointwise Jacobi and Gauss-Seidel methods respectively. It can 
that the convergence of one of them ensures the convergence of the other, since the be 

spectral radii of the associated matrices verify the relation 

P([S-'PIG-S) = (P([S-'p1,))2, (15) 

which indicates also that the convergence rate of the Gauss-Seidel method is always better than that of 
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the Jacobi method. The field of application of the Jacobi method will thus be limited to those 
applications in which the update of the vector components is not made sequentially (i.e. parallel 
computations). 

By decomposing the solution vector x and the right-hand-side b into subvectors of length nb, and 
correspondingly the matrix A into squared blocks of arbitrary size nb, blockwise versions of these 
algorithms are easily derived. The matrix D is now block-diagonal, i.e. 

D = diagIA11,A22,. . . ,AnnI3 (16) 

and the block-Jacobi and block-Guass-Seidel schemes read respectively 

x,k+l - -A-I  11 (-An14+' - An24+' -An&' . . . + 
both of them requiring the storage of the factored diagonal blocks, which can be viewed as a block- 
diagonal preconditioning technique whose quality increases with the block size nb. 

2.3. Gradient methods for non-symmetric systems: GMRES 

The generalized minimum residual method (GMRES) is at present one of the most popular iterative 
methods used for non-symmetric ssytems and belongs to the family of gradient methods. It is based on 
the Krylov subspace iteration method, where the solution is found, starting from an initial guess XO, as 
follows. The original (N-dimensional) system (1) is replaced by 

Az = ro, (19) 

where z = x - xo and ro = b - Axo is the initial residual. The rnth approximation to the solution, z,, is 
then searched in the Krylov subspace K" = span(r0, Aro, A2ro, A3ro, . . . , Amro}.  

The original Krylov subspace iteration method of Arnoldi' was improved by Saad and Schulq8 who 
formulated the GMRES method to be presented here. The general update formula is 

Xm = xo + Zm, (20) 

where z, belongs to the Krylov subspace K". In other words, 
m 

where the scalars yk are the components of the correction z, in the base formed by the vectors sk, which 
are constructed as the iterative process advances. To that approximation corresponds a residual 
r, = b - Ax,. The value of yk is chosen in such a way as to minimize the norm 11 b - Ax 11 . Let us 
assume that at the mth iteration the vectors Sk, k= 1, . . ., m, are known. Let us define, for each 
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iteration counter m, the (m + 1) x m Hessenburg matrix 

We will also denote by S,,, the N x m matrix made up of the m-vector base of the Krylov subspace 
sk, k=  1, . . ., m, which is orthonormal by construction. The following important property is then 
verified: 

AS, = S,,,+lHm. (23) 

Let us represent by em = { 11 ro 11 , 0, , . . ., 0) the m-vector whose first entry is the Euclidean norm of 
the initial residual and whose last m - 1 entries are zero. Since so and ro are collinear, it follows that 
ro =S,,,+lem+l. 

The evaluation (by minimization) of the global residual norm in the N-dimensional space is made by 
means of the following property, which allows for a dimension reduction in the space where the norm 
is calculated: 

n 
m+l - Ilr,llN = ro - A  C y j l ~  11 = llro - A S d l l ~  = lISrn+r (em+' - H m Y ) l l N  = lle Hm.Yllm+l (24) 

where the subscripts to the norms indicate the dimension of the space in which they are calculated. 
Using this property, the minimization problem takes place for iteration m in a subspace of dimension 
m +  1: 

11 k=l N 

minllb - A(XO + z)llN = minllem+l - H,~ l l ,+~ .  (25) 

At the beginning of an iteration an orthonormal base of the (m + 1)-dimensional Krylov subspace K" 
has to be found. At this point we have a set of m orthonormal vectors sk and the additional vector Amro, 
which is not orthonormal to the subspace generated by the others. A modified Gram-Schmidt 
orthonormalization process is then required to obtain s,+ I .  

Modified Gram-Schmidt orthonormalization algorithm 

First vector of the base: SI t II ro II -Ira 
For m = 1, . . ., mmax repeat: 

For j = 1, . . ., m repeat: 
s m + l  + A s ,  

Calculate and store STAS,, i.e. the mth column of H,,, 
Update: s,+I +s,+I - (S7ASm)s j  

Normalize: s,+~ t 11 s,+~ 11 -'s,,,+~ 
Next j 

At this point the base of the (m + 1)-dimensional Krylov subspace is known, i.e. the matrix S,, as 
well as the Hessenberg matrix H,. The problem now is to find the co-ordinates that minimize the 
expression given in (25). This can be done taking advantage of the quasi-triangular structure of the 
matrix H,,,, which allows for an easy conversion to a triangular one. A series of orthogonal Givens 
rotations R are applied to the matrix in such a way that the resulting (k + 1) x k matrix R,,, = RH,,, has a 
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zero last row: 

Ilp+' - H m y l l m + l  = IIRem+l - m d l l m + l  = IlZm+l - fimYIIm+l* 

If the first m components of the vector are forced to be zero, we have the triangular system 

and it necessarily follows that 

minlie"+' - H m y I I m + l  = F m + I  I. 

1177 

The construction of the matrix RH, can be viewed as a QR factorization in which the matrix R is the 
composition of m plane Givens rotations, i.e. 

R = R m R m - ~ R m - 2  . . .  R1, (29) 

where each Givens rotation is defined as 

In addition, owing to (25), the exact value of the residual r,  = b - Ax,,, is obtained by (28) even 
without the explicit calculation of the corrected solution x,. This permits us to construct the solution 
by means of (21) only when convergence has been reached. 

For the sake of completeness the full GMRES algorithm (with left preconditioning matrix L )  is 
given below. 

GMRES algorithm 

Compute ro t L - ' ( b  - Axo) 
el +- II ro II 
First vector of the base: sl t 11 ro )I -'ro 
For rn = I ,  . . ., mmax repeat: 

Modified Gram-Schmidt algorithm: 
s,+~ c L -   AS, 

For j = 1, . . ., m repeat: 
Calculate and store s;L-IAs,,,, i.e. the mth column of H, 
Update: s,+~ - (S :L- 'AS~)S~  

Next j 
Normalize: s,+~ t 11 s,+~ 11 -'s,,,+~ 
End of modified Gram-Schmidt algorithm 
Complete the subdiagonal term H,+I ,~  t I( s,+l 11 - I  

QR algorithm: 
For j= l ,  ..., m - 1  repeat: 

Elementary Givens rotations: h 1 t Hj,,+l, hz + H,+I ,m+l 

Elementary Givens rotations: Hj,,+l t c , h l  +sjh2, Hj+l,m+l c - sjhl +cjh2 
Next j 
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Compute S, and c m :  r -+ J(H2m,m+l + H z m + i . m + i )  

cm +- r-  IHm,m+ 1, srn + r-  ' H m +  I ,m+ 1 

Hm,m+l + r, Hm+l ,m+l  + 0 
Update em and e,,,+l: 
End of QR algorithm 
Convergence test: if I e,+l I < E ,  exit m-loop 

t - s,e,, em t c,e, 

Solve the m x m system Hy=e 

Update the solution: x t x o c  $Sk 

It is evident from (2 1) that the selection of an appropriate initial guess xo is extremely important for 
an efficient performance of the algorithm. In addition, the size of the system of equations to be solved 
at each iteration level increases with the iteration counter. In practice, when difficulties in convergence 
are detected and/or when the computational cost of solving Hy=e begins to be significant, it is 
advisable to stop the cycle, form a new tentative solution and restart the procedure from this point on. 
Typical values for maximum inner iterations are in the range 10-50, whereas the outer iterations are 
restarted until convergence is reached. 

rn 

k= 1 

2.4. Gradient methods for non-symmetric systems: CGS 

The conjugate gradient method is, when combined with an adequate preconditioning, one of the 
most powerful iterative methods for solving symmetric, positive definite systems of equations. The 
starting point of this method consists of associating the solution of the linear system 

Ax = b (31) 
with the minimization of the function 11 Ax - b 11 '. The idea is to produce a series of corrections si, 
mutually A-conjugate, that produce a series of approximate solutions xi+l =xi +si in such a way that 
the residual vectors ri = b - Axi are mutually orthogonal. The hypothesis of A being positive definite is 
basic to ensure that it possesses an associated norm. Under these conditions it can be proved (see e.g. 
Reference 15) that the method converges to the exact solution in at most N iterations, N being the 
system size. The overall algorithm is summarized as follows, assuming a lei? preconditioning matrix B. 

Conjugate gradient algorithm 

First residual vector: ro = b - Axo and first correction direction po = SO = B-  Ir0 
For m = 0, . . . , mmax repeat: 

Compute g,,, + r;fism/p;fiApm 
Update x,+l t x, + a g ,  
Update r,+l t r ,  - aJp, 
Convergence test: if 11 r,+l ( 1  c E ,  stop the calculation 
Update s,+~ t B - l r m + l  
Compute B m + l +  r;fi+lSm+i/r,sm T 

Updateprn+l +srn+l + B m + l ~ m  

Next m 

When dealing with non-symmetric systems of equations, there is no norm associated with the matrix 
and the optimal properties of the algorithm are lost. Several attempts to remedy this inconvenience 
have been proposed. For instance, premultiplication by AT in (3 1) would yield the symmetric system 
ATAx = ATb, to which the original scheme could be applied. This choice constitutes the so-called 
normal equation method. Another possibility, usually referred to as the biconjugate gradient method,l6 
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consists of applying the conjugate gradient method to the system 

The iterative process is carried out in this case by means of two series of vectors corresponding to the 
two subsystems associated with the scheme. The (unpreconditioned) iterative algorithm is constructed 
according to the following rule. 

Biconjugate gradient algorithm 

First residual vector: ro = b - Axo and first correction direction po =SO = qo = ro 
For m = 0, . . ., mmm repeat: 

Compute a, + rLsm/q%Ap, 
Update X,+I e x ,  + E d ,  
Update s,+~ ts, - u,Jq,,, 

Convergence test: if 1) r,+l 11 c E, stop the calculation 

Update P m + l  + rm+l+ B d m  

Update rrn+l+ rm - UJpm 

Compute Prn + r;+l srn + I /rmsm 

Update qrn+l+ srn+1+ Pmqm 

T 

Next m 

The above algorithm can be viewed as a form to obtain the vectors rm, s,, pm and qm in a recursive 
manner, expressed as polynomials of degree m, of the matrix A applied to the initial residual vector ro. 
The polynomial schemes are 

rm = @m[AIro, sm @,VT1ro, P m  = Qrn[A]r09 rm = wmPTIro, (33) 

(34) 

where the polynomials Om and Y, are defined recursively according to 

@m+l [A1 = @,[A1 - ~nA*rn[Al, @ m + ~ [ A l  = qrn[Al + B m A @ m [ A l .  
The basic idea of the conjugate gradient squared method due to Someveld' consists of squaring the 

biconjugate gradient recursive relations given by (34). By doing so, the residual after m iterations is 
contracted to @;[A]ro rather than @,[A]ro, thus providing a better convergence behaviour. 

The resulting CGS algorithm is summarized in the following, assuming a left preconditioning matrix 
B - l .  

Conjugate gradient squared algorithm 

First residual vector: ro = B -  ' (b  - Axo) and initialization vo = qo = 0 and Po = 1 
For m = 1, . . ., mmax repeat: 

Compute B m  + r~-lro/Bm-l 
Update Prn + rm - 1 + PrnVm+l 

Update q m  + P m  + Pm(Vm - 1 + P m q m  - I ) 
Compute a, + r % - , r o / p p  T 

Update v, t p ,  - uJ3- Ap, 
Update X, + X, - 1 + a,,,@, + v m )  

Update r, t r, - B-'A@,  + v,) 
Convergence test: if 11 r, 11 < E ,  stop the calculation 

Next m 
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When comparing the biconjugated gradient algorithm with the CGS algorithm, one remarks that the 
matrix-vector multiplications in the former are of the type Ar as well as ATr, whereas the latter contains 
only products of the form Ar. This is an interesting advantage of the CGS method with respect to the 
biconjugated gradient method, because the practical implementation of products ATr is usually 
complicated and requires an ad hoc subprogramme which depends on the matrix storage scheme, 
which normally has been devised to perform operations of the type Ar efficiently. Note also that both 
methods in their preconditioned versions require two back-substitutions of the type B -  ' r  per iteration. 

The result that ensures the exact convergence of the conjugate gradient method applied to 
symmetric, positive definite matrices in at most N iterations, N being the size of the system,15 has a 
counterpart for non-symmetric systems, under a slightly more restrictive hypothesis, for the 
biconjugate gradient method or the CGS method. 

According to preliminary computations, which agree with the results found by other researchers (see 
e.g. Reference 3), the advantages of CGS with respect to the biconjugate gradient algorithm are 
considerable. Another recent method based on the biconjugated gradient technique has shown even 
better performance in terms of smoothness of the convergence curves as well as in terms of the number 
of iterations, namely the stabilized biconjugate gradient method (Bi-CGSTAB).6 This method has also 
been used and compared with CGS for some fluid dynamics applications, showing a comparable 
behaviour. l 7  However, for the sake of conciseness, only the CGS method was retained from this family 
for comparison with the other schemes, since it has been more widely used up to date. 

2.5. Non-linear iteration-based methods: quasi-Newton method 

During the last few decades, significant advances have been made in the numerical solution of non- 
linear vectorial equations. In particular, in applications involving the numerical discretization of non- 
linear partial differential equations, the discrete solution of the problem (either stationary or time- 
dependent) is frequently found as the solution of a non-linear vectorial equation expressed in the quasi- 
linear form 

A(x)x = b(x). (35) 
Here A(x) is a matrix whose dependence on the unknown vector x is in conformity with the nature of 
the problem under consideration. Equation (35) has to be solved iteratively according to a strategy that 
should take into account, among many other factors, the size of the system, the number of times that a 
similar system has to be solved (boundary value problem or initial value problem) and the degree of 
simplicity of the fimctional dependence of A(x)  on x .  

As is well-known, the most powerful method of solving (35) iteratively is the Newton-Raphson 
algorithm. According to this scheme, an improved update for the solution is found as 

xm+l  = x m  + J-'(Xm)rm, (36) 
where the residual vector is given by r, = b(x,) - A(xm)xm and the Jacobian matrix J is calculated as 

The Newton-Raphson algorithm provides a quadratic convergence rate, i.e. there exists a positive 
constant cNR that verifies 

(38) 2 l l x m - x l l ~ C N ~ I ( ~ , - ~ - ~ ( l ,  m = 1 , 2 ,  ..., 
where x is the solution of (35). 

This algorithm is computationally expensive since it involves the computation of the Jacobian 
matrix as well as the solution of a different linear system at each iteration level. There are two possible 
ways to reduce the numerical cost of the iteration scheme: in both cases one can replace the Newton- 
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Raphson correction J-'(x,)r, by a simpler approximation. The first approach is based on the 
computation of the exact Jacobian and a subsequent approximation of the solution of the system for the 
correction s, = J-  (xm)rm by means of an iterative process interrupted before complete 

The second approach consists of replacing the Jacobian matrix by another simpler 
matrix to invert G, and then approximating J-  '(x,,,)r, x G;Irm. Some algorithms from this second 
approach, initially devised for the non-linear equation (35), can be applied to the particular case of the 
linear system (1). A popular choice in this approach is to take 

1 

G ,  =J(xo),  m = 1 .2 , .  . . , mmm, (39) 

which is usually referred to as the modijied Newton-Raphson method. This method has no application 
for our purposes since it implies the exact computation of the Jacobian at the first iteration, which is 
precisely our original linear problem. Other methods from this second approach come from the quasi- 
Newton algorithm family (see Reference 20 for an extensive survey), which is based upon the secant 
condition 

X ,  - X , - I  = Hm(rm - rm-i),  

where H, is an approximation of the matrix J-  '(x,). The matrix H ,  has to be determined according to 
a recursive scheme by imposing suitable additional properties. Once an initial approximation to the 
inverted Jacobian has been defined, the method should be able to compute the successive updates for 
the solution x, and for the approximate inverted Jacobian H ,  according to these rules. For instance, if 
the first approximation to the inverted Jacobian, H I ,  is symmetric, positive definite, one could pretend 
this character to be inherited by the successive updates H,,,. This approach gives the so-called BFGS 
(Broyden-Fletcher-Goldfarb-Shanno) method, which has been used in many fields but whose 
application in the fiame of non-symmetric matrices does not seem feasible. 

If, in addition to the secant condition, we claim that the matrices H, and H ,  - only differ in the 
monodimensional subspace given by the vector x, - x,- 1 ,  then the matrix H, is completely 
determined as a function of the preceding H,- by the so-called quasi-Newton rank-one update or 
Broyden method, which is presented here according to the format proposed in Reference 10: 

where 

Using the auxiliary vector 

the mth correction is given by 

where the product H, - 'r ,  is found as 
1 

Hm-lrm = n (I  + wjs:)Hlrm. (45 ) 
j=m-2  

At each iteration one first obtains the initial correction H,,,-lrm by means of (45). Note that the 
successive premultiplications are easily performed by taking into account the relationship 

(46) (I + W j S + J J  = vj + (Sj T VJ)Wj, 
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so that step (45) requires the storage of the successive vectors sk and wk, k =  1, . . ., m - 1. Then 
H,- lr ,  is substituted in (43) to obtain (and store) the vector w,- 1. Finally, the solution update s, is 
computed by means of (44). 

The iterative scheme has been presented in a way that allows for easy inclusion of a scalar relaxation 
factor at each iteration level. A line search parameter pm can be introduced in the update formula 
according to 

x m  =xm-1 +sm-l = x m - 1  +~mHm-lrm-~. 

Several techniques have been developed to estimate the optimal step length. However, for the type of 
problems under consideration, this approach has shown little advantage and so it has been preferred to 
select p m  = 1, m = 1, . .-, mmm. In this case the above algorithm admits some simplification. Defining 
the working vector p = H, - lrm, equations (43) and (44) yield 

(47) 

(48) 
1 IIsm- 1 I I ~  

W,-l = 2 Pl s, = 2 P7 

which gives w,- =s,/ 11 s,- 1 [ I 2 ,  thus avoiding the need for storing the whole series of vectors wk. 

Ism-1 II - s i - 1 ~  IIsm-1 II - ~ i - 1 ~  

Broyden algorithm 

First iteration: po i- B-'(b - Axo) 
Update x1 t xo + so 
Second iteration: p t B -  ' (b  - A x l )  

Compute and storef(0) t 1) so 1) 
Compute s 1 t  [ f(o)/( f(0) - pTs0)lp 
Update x2 t x1 + s1 
For m = 2, . . ., m,, repeat: 

Compute p t B -  '(b - AX,) 

For k =  0, . . ., m - 1 repeat: 

Next k 
Compute and store f(m - 1) t I( s, - 1 I( 
Compute s, t V ( m  - l)/(f(m - 1) - pTsm- 1)lp 
Update x,+~ t x, + s, 
Convergence test: if 11 s, 11 -= E ,  stop the calculation 

Compute P + P + (PT% l f ( m k +  1 

Next m 

3. NUMERICAL TESTS 

Two hyperbolic model formulations have been considered for the following benchmark exercises. The 
first concerns the simple scalar convection-difision equation. For the second a semi-implicit version 
of the multicomponent inviscid Euler equations has been considered. An unstructured finite volume 
formulation has been used in both cases to carry out the spatial discretization. A different degree of 
implicitness in the time difference scheme has been adopted (fully implicit scheme for the former and 
semi-implicit scheme for the latter). The resulting matices exhibit the typical non-symmetric character 
associated with implicit discretizations of non self-adjoint operators (as the advection operator). Seven 
iteration procedures have been tested for each problem: three of them can be classified as strongly 
preconditioned schemes (GMRES-ILU, Broyden-ILU and CGS-ILU); the remaining four schemes 
are weakly preconditioned or non-preconditioned (GMREShliagonal, Broyden-diagonal, Gauss- 
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Seidel and Jacobi). The convergence curves (error measure versus iteration counter) for each case will 
be represented according to the following symbol notation. 

1. Strongly preconditioned methods 

(a) GMRES method (with restart every five iterations) with ILU preconditioning (A). 
(b) Broyden method (0). 
(c) CGS method (with restart every five iterations) with ILU preconditioning (0). 

2. Weakly preconditioned or non-preconditioned methods 

(a) GMRES method (with restart every five iterations) with diagonal preconditioning (V) .  
(b) Broyden method (with restart every 10 iterations) with diagonal preconditioning (x). 
(c) Gauss-Seidel method (*). 
(d) Jacobi method ( + ). 
According to this test programme, the number of iterations to reach convergence can be compared 

only between schemes with the same level of preconditioning. For these the CPU time, the number of 
iterations and the smoothness and regularity of the convergence curve are factors that could be taken 
into consideration in selecting the optimum method. In contrast, for the overall comparison the basic 
performance parameter is only the CPU time. 

The CGS4iagonal combination has been rejected because preliminary tests have shown that the 
CGS iterative scheme does not behave satisfactory unless it is combined with a 'good' preconditioning 
technique. The selection of the number of iterations allowed before a restart (with the computation of a 
new first guess for the solution and the corresponding initial residual vector) has also been made 
according to preliminary computations. The approximate optimum of five iterations per cycle for the 
GMRES method has also been reported by Nkonga." Although they appear to be not far from the 
optimum for the presented cases, they certainly depend on the problem characteristics and could vary 
from case to case. 

The error measure for iteration i selected for all the tests is E(i) = log( I I  ri II 1 II ro ( I  ), where (I a I1 
represents the Euclidean norm of vector a.  

A typical time station of each problem has been selected to analyse the convergence curves and CPU 
times. All computations were made on an HP-835 computer using single-precision arithmetic. 

3.1. Scalar advection-diffusion equation 

according to 
Given a stationary velocity field u and a diffusion parameter IC, a passive scalar W is transported 

(49) 
aw 
- + u . v w  = V.(KVW). 
at 

Three different problems have been analysed. They have been borrowed from Nkonga,*' who 
compared for these problems the performance of the GMRES and Jacobi methods combined with ILU 
and diagonal preconditionings. 

A node-centred finite volume technique has been used to solve these problems. Let sZi represent the 
control volume around node i and IRiI its area. Let W," and y+' represent the control-volume- 
averaged values of the transported quantity at t = t,, and t = t,, + At = tn+l respectively and define the 
nodal increment of the conserved quantity as SW,!' = Win+' - W,". The advection-difision equation 
can be approximated by 
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where represents the numerical convectiveflux from volume Qi to volume Q,, WE+' represents the 
numerical diflusiveflux between the same control volumes and the sum is extended to the set of nodes 
T(i) surrounding node i .  

The computation of the numerical convectiveftux has been made as follows. Denoting by vii the 
surface normal of the interface between control volumes Qi and Qj, the average normal velocity across 
this interface is given by unij = ~ii*Uii, where Uij = 0.5(ui + u,). The fully upwinded numerical flux of 
the conserved quantity across this interface can be computed according to 

4ij = unij(W,i + 4) - lunul(W,i - 4). (51) 
If the velocity field is constant in time, the following linearization in time is exact: 

The computation of the numerical diffusive j lux has been made via a standard finite element 
discretization of the Laplace operator using linear triangles. The reader is referred to Reference 2 1 and 
22 for further details on the numerical scheme. The assembly of the expressions for the implicit 
numerical fluxes yields the discrete system of equations that has to be solved iteratively at each time 
level, i.e. 

ASW, = 4; + W;, (53) 

where the finite-element-discretized explicit diffusive flux is second-order-accurate in space. A quasi- 
second-order scheme in space can be achieved also for the convective flux by putting in the right-hand 
side a second-order evaluation of the convective numerical fluxes entering the control volumes around 
each node, obtained with a MUSCL-like technique.23 

3.1.1. Test case I :  concentration hill convection. The first problem consists of the translation of a 
concentration cone over a square domain. The problem description is 

W&y) = 1 + max(0,O.l - 5J[(x - 0.25)2 + 0, - 0.25)2]}, 

Winlet = 1, u = (1,0.5), i-2 = [O, 11 x [O, 11. 

The velocity field and initial conditions are shown in Figure 1. The inviscid solution for K = O  
computed with a Courant-Friedrichs-Lewy (CFL) number of 0.4 at t = 0-42 16 and 0.75 is presented in 
Figure 2. 

A series of tests varying the diffusion parameter for the same initial conditions and velocity field has 
been conducted for this problem. The aim is to analyse the convergence behaviour of the different 
methods applied to matrices representing several combinations between a 'pure' advective (hyperbolic) 

Figure 1 .  Initial conditions (left) and velocity field (right) for problem 3.1.1 
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Figure 2. Solution to inviscid problems 3.1.1 for CFL = 0.4 at 1 = 0-42 16 (left) and 0.75 (right) 

Figure 3. Convergence c w e s  for problem 3.1.1 (Pe= co) 

problem and a ‘pure’ diffusive (parabolic) problem. The appropriate parameter to measure this is the 
(grid) Peclet number Pe = ( I u I Ax)/K, where Ax is the characteristic mesh size. A pure convective 
problem corresponds to Pe = 00, while a pure diffusive problem implies Pe = 0. The selected values for 
this parameter were Pe = 00, 3 and 0.15. The corresponding values of K were IC =O, 0.0025 and 0.05 
respectively. 

The convergence curves for the different methods tested for this problem are shown in Figures 3-5. 
The results are summarized in Table I. 

Table I. Summary of test 3.1.1 

GMRES-ILU Broyden-ILU CGS-ILU GMRES- Broyden- Gauss-Seidel Jacobi 
diagonal diagonal 

~ ~ ~~ 

159 iter. Pe= co 21 iter. 21 iter. 25 iter. 157 iter 144 iter. 64 iter. 

Pe=3 27 iter. 26 iter. 23 iter. 157 iter. 147 iter. 102 iter. 239 iter. 
31 s 26 s 41 s 148 s 104 s 27 s 75 s 

37 s 31 s 53 s 141 s 106 s 42 s 1 1 1  s 

82 s 72 s 163 s 250 s 302 s 162 s 189 s 
Pe=0.15 62 iter. 66 iter. 108 iter. 270-NC 400-NC 400-NC 400-NC 
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Figure 4. Convergence curves for problem 3.1.1 (fe = 3) 

Figure 5 .  Convergence curves for problem 3.1.1 (fe = 0.15) 

For all Peclet numbers, as expected, the number of iterations required when an ILU preconditioning 
technique is used is less than the corresponding number of iterations required for the same method 
with a weak preconditioning. However, in terms of computational cost the classical non-preconditioned 
relaxation methods seem to be competitive with the fully preconditioned gradient and Newton methods 
and the worst results are obtained with the gradient and Newton methods combined with a weak 
preconditioning. Another appealing feature of these results is the degeneration of the convergence 
properties of all methods as the Peclet number decreases, due to the spreading of the matrix 
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eigenvalues as the fast-moving phenomena associated with the diffusion term become more and more 
important in the model. For Pe = 0.1 5 the slope of the convergence curve for the Jacobi and Gauss- 
Seidel methods becomes almost horizontal. The GMRES-diagonal and Broyden-diagonal methods 
exhibit a very irregular convergence curve. They reach an error level of about 5 x lop4 in 
approximately 240 iterations, but the error remains constant around this value fiom that point on. The 
gradient and Newton methods with ILU preconditioning reach convergence satisfactorily, but a 
significant advantage is found for the Broyden and GMRES methods with respect to the CGS method 
when considering both the number of iterations and the CPU time. The reason for the high cost per 
iteration of the CGS method is the double back-substitution required at each iteration level. This tends 
to penalize this method, even for the same slope of the convergence curves (error versus iteration). 

3.1.2. Test case 2: Gaussian hill rofation on a disc. The second test case for the advection- 
diffusion equation consists of the rotation of a Gaussian hill of density on a circular domain: 

w0(x,y) = exp[-lO(x - 0.15)* - 100, - 0.5) 2 1, 
Winlet = 0, 52 = B(O*5,0.5, J2), (54) 

where B(O.5, 0.5, 4 2 )  denotes the disc whose centre is at (0.5, 0.5) and whose radius is J2. The 
computational grid (involving 10,201 nodes) is shown in Figure 6. 

This case has been also used to study the influence of the Peclet number on the convergence patterns 
of the iterative schemes under consideration. Two runs have been made with K = 0.0025 (Pe = 8.8) and 
K = 0.017 (Pe = 1.3). The convergence curves for the former are plotted in Figure 7 and those 
corresponding to the latter are plotted in Figure 8. The results are summarized in Table 11. 

The general trends observed in test case 3.1.1 are repeated here. Among the relaxation methods, 
only the Gauss-Seidel method can be competitive with the ILU-preconditioned methods, although the 
degree of deterioration of the convergence (in terms of CPU time) when the Peclet number decreases 
from 8.8 to 1.3 is higher for the former (136 s/61 s=2.29) than for the latter (46 s/28 s =  1.64 for 
GMRES-ILU, 38 s/22 s = 1.72 for Broyden-ILU and 59 s/33 s = 1.78 for CGS-ILU). Among the 
ILU-preconditioned methods, Broyden-ILU exhibits the best CPU times. On the other hand, the CPU 
cost of the diagonally preconditioned GMRES and Broyden methods seems to indicate that such a 
weak preconditioning is not adequate for these methods. 

Figure 6. Computational grid for problem 3.1.2 
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0 IOC 110 140  160 

Figure 7. Convergence curves for problem 3.1.2 (Pe=8.8) 

3.2. Semi-implicit inviscid Euler equations 

The second model equation which will be considered for testing the set of algorithms under analysis 
is the system of inviscid, multicomponent Euler equations describing the flow of a mixture of r gases 
in two space dimensions, i.e. 

aw 
at 
- + V*F(W) = 0, 

GMRES dlwml 

x Bmydrndiyansl 

t 1 
I D  '0 I,* l s a  io, :>I 

Figure 8. Convergence c w e s  for problem 3.1.2 (Pe = 1.3) 

(55 )  
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Table 11. Summary of test 3.1.2 

GMRES-ILIJ Broyden-ILU CGS-ILU GMRES- Broyden- Gauss-Seidel Jacobi 
diagonal diagonal 

Pe = 8.8 20 iter. 19 iter. 21 iter. 142 iter. 152 iter. 164 iter. 200-NC 

Pe = 1.3 3 1 inter. 31 inter. 36 inter. 148 inter. 161 inter. 352 inter. 400-NC 
28 s 22 s 33 s 124 s 103 s 61 s 89 s 

46 s 38 s 59 s 141 s 120 s 136 s 118 s 

where the conserved variables Wand the components of the flux vector F are given by 

9 F y  = 

Here Pk represents the partial density of component k, u, and uV are the components of the velocity 
vector u, E is the total energy per unit mass and p is the total density given by xk Pk.  The total energy 
E is made up of the internal energy per unit mass, e (which is assumed to be only a function of 
temperature), and the kinetic energy per unit mass, 1) u 11 2/2. The closure equation linking the pressure 
p and the conserved quantities is provided by the state equation 

p k  

k=l W k  
p = R T C  - = ( y  - l)pe, (57) 

where R is the universal gas constant, T is the temperature, W k  is the molar mass of component k and y 
is the ratio of specific heats at constant pressure and volume. The temperature is given by 

e 

c v  T = - - ,  

where the mixture heat capacity at constant volume is calculated according to 

in which c,,k stands for the specific heat at constant volume for component k. 
The spatial discretization scheme is a non-structured, node-centred finite volume formulation. Let qii 

be the normal to the interface between control volumes Bj and A projection of the flux vector F in 
the direction qii can be made, yielding Fg = F- qii. The conservation system (55) is known to be 
hyperbolic, so the Jacobian matrix associated with Fg, i.e. 

aF, 
Aij = - aw’ 

is diagonalizable and has real eigenvalues for all physically compatible states. In addition, it can be 
shown that F,, =A& These properties imply that there exists a set of characteristic variables U = f ( W) 
for which the conservation equation (55) decouples into a system of r + 3 pure advection equations 
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(linear or not), whose advection speeds are the eigenvalues of the matrix& These values are 

A.1 = u-qq (r + 1 times), 
A.2 = u-qq + IIqqllc (one time), 
A.3 = u'qq - Ilq~lIc (one time), 

where c is the sound speed associated with the state JT 
The first r + 1 characteristic fields are associated with convective waves whereas the last two are 

associated with pressure waves. If the sound speed is very large with respect to the fluid speed (i.e. low 
Mach number), an explicit time integration is unable to correctly track the propagation of all signals. 
The pressure waves associated with the eigenvalues R2 and R3 propagate very fast across the domain. 
Even if the hyperbolic character of the equations is preserved, the influence of the pressure waves 
affects the entire domain very rapidly. The same effect is associated with the diffusive term V.(lcVW) in 
the scalar advection-diffusion equation, which provides the parabolic character of (49). The correct 
tracking of the convective signals would require an implicit time integration scheme to overcome the 
severe time step restriction due to the CFL condition for the fast sonic waves. 

Many semi-implicit formulations consist of a time discretization which is implicit only for the part of 
the flux directly linked to the pressure waves. The aim is to retain accuracy for the convectively 
transported signals, treating them explicitly with a convective CFL number close to unity, whereas the 
sonic part of the flux can be treated with time steps larger than those imposed by the CFL sonic 
restriction. The reader is referred to Reference 24 for a survey. 

The time discretization scheme adopted here" is based on the consideration of the conservation 
equations integrated between times t = t,, and t = t,, + At = using the mid-step flux formulation 

(PY)"U" 0 
Fn+l12(W) X [ (pu)"u" ] + [ p"+l ]. 

(pE)"u"+' pn+lUn+I 

The conservation equation in control volume i can be approximated by 

The numericaljlux dii at the interface between control volumes Ri and Rj has to be computed as a 
projected flux in the direction qii, depending on both states w, and W,: 

4ij =f(Fij(Wi)v F i j (q ) ) -  (64) 
The Roe scheme has been selected to compute the numerical flux. This approach uses a secant 

approximation of the flux homogeneity relation c, =&K An averaged state fi= fi(l<wi, W,) is 
constructed in such a manner that Fo{ w.) - Fo{ 5) = do{ W)( w. - y), thus allowing for an upwind 
treatment of the different characteristic fields. The explicit version of the Roe numerical flux fluction 
reads26 

4; = 1/2(Fij(Wi") +Fij(?")) ++Iq(~)l(Fy" - yn), (65) 

where I A 1 = T - ' 1 A 1 T, T and T - being the matrices that reduce the matrix A to its diagonal form, 
and [A I =diag{ 1 R1 1 ,  . . ., I A, 1 ,  I R2 1 ,  113 1 }. The semi-implicit numerical fluxes are obtained 
according to the following two-step time linearization. 

(a) The state vector is decomposed into mass flux (r entries) and momentum and energy flux (three 
entries). The same is done with the global flux, i.e. W= {pe w }  and 4 = {Yy, p}. 
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The explicit equations for the partial densities are first solved (possibly with a MUSCL-like 
second-order evaluation of the mass fluxes Ilry). A set of advanced densities (p?" , . . . , ) is 
obtained. 
The numerical flux for the momentum and energy, computed according to (62), is obtained 
by means of a time linearization (similar to (52)) around the fictitious state Wo = 
{p?+', . . . , p;+', (pux)", (pu,)", (pE)"). Since the numerical flux has only three non-zero 
entries in this step, the corresponding Jacobian blocks are of constant size ( 3  x 3), 
independently of the number of components in the mixture: 

The explicit flux term q$ is also computed according to a MUSCL-like second-order 
approximation. 
A Lax-Wendroff-like stabilization term of the form V.(O.5At[uu]*VW) is added to the 
equations. This allows us to reach a selectively second-order accuracy in time for the convective 
modes. The reader is referred to Reference 25 for details. 

To summarize, the described numerical technique requies at each time level, after the density update, 
the solution of the system of equations 

whose size is 3Ng x 3Ng, Ng being the number of grid points. The linear system will be solved using 
the iterative schemes under analysis for some selected problems. 

3.2.1. Test case I :  subsonic shock tube. The first test case concerns a subsonic shock tube 
calculation. The computational domain is a tube (1 unit-length long, 0.1 unit-length wide) divided into 
two parts (each 0.5 unit-length long) by a membrane. The grid is a regular triangulation of the domain 
with 100 divisions in the main direction and three divisions in the transversal direction, thus having 
303 nodes. A perfect gas with y = 1-4 fills the tube, the left part at pressure p = 1 and temperature 
T =  2.5, the right at p = 0.95 and T =  2.5. At time t =  0 the membrane is assumed to disappear. Three 
characteristic waves appear: a shock propagates to the right with velocity u + c, a contact discontinuity 
moves also to the right with velocity u and a leftwise-moving rarefaction wave appears travelling with 
velocity u - c. the density field at times t = 0, 0.05, 0.1, 0.15 and 0.2 is shown in Figure 9. Note that 
for the final time the shock wave has reached the position x = 0.75, whereas the contact discontinuity is 
still very vlose to x = 0.5 (the maximum Mach number reached by the flow is about 0.0 18). 

The convergence curves for this problem are shown in Figure 10. In order to study the influence of 
the grid size and orientation on the results, the same problem has been tested on a unique ribbon of 
triangular elements (202 nodes) oriented in a different manner. The convergence curves corresponding 
to these computations are shown in Figure 11. The results are summarized in Table 111. 

The most interesting feature of Table 111 comes from the significant differences found between the 
problem treated either with three or with two rows of nodes. The matrices associated with these two 
cases are supposed to possess similar properties from the physical characteristics of the problem, but 
the spatial discretization support provides a noticeable difference. The two-row case yields a more ill- 
posed problem since it tends to reflect two parallel Riemann problems that actually are almost 
uncoupled. The more rows of nodal control volumes added, the stronger the coupling between these 
Riemann problems is through the normal between each row of nodes. The worst-performing methods 
are again the gradient and Newton methods combined with a diagonal prconditioning. The Gauss- 
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Figure 9. Density evolution for problem 3.2.1 
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Figure 10. Convergence curves for problem 3.2.1 (303 nodes) 

Seidel method is the best-performing method in both cases in terms of CPU time, thus providing a very 
competitive alternative to the ILU-preconditioned methods. However, one should also take into 
account that the CPU time might not be relevant for such small problems. The comparison among 
the GMRES-ILU, Broyden-ILU and CGS-ILU methods reveals that the second one is the best 
performing method also for these cases. 

3.2.2. Test case 2: gravity-induced gas oscillation in an annular domain. An annular domain (inner 
radius 0.2, outer radius 0.5) is filled with a perfect gas with y = 1.4 and C, = 1. The gas is initially at 
rest with p = 1 and T=0 .5 .  At times t=O a gravitational acceleration begins to act, producing a 
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Figure 11.  Convergence curves for problem 3.2.1 (202 nodes) 

Table 111. Summary of test 3.2.1 
~ ~~~ ~ ~~ 

GMRES-ILU Broyden-ILU CGS-ILU GMRES- Broyden- Gauss-Seidel Jacobi 
diagonal diagonal 

~ 

303 nodes 14 iter. 13 iter. 11 iter. 60 iter. 64 iter. 44 iter. 70 iter. 

202 nodes 21 iter. 21 iter. 22 iter. 106 iter. 113 iter. 91 iter. 143 iter. 
1.28 s 0.94 s 1.12 s 3.01 s 2.22 s 0.82 s 1.71 s 

1.31 s 0.98 s 1.58 s 3.54 s 2.23 s 0.93 s 1.79 s 

stratification of the fluid. Pressure waves develop which reach the lower walls rapidly and are then 
reflected. After a series of reflections the hydrostatic pressure field should be reached, with the density 
accumulated in the lower part of the domain and the fluid at rest again. Depending on the intensity of 
the gravity, the flow regime can be characterized by a low Mach number (for weak gravity) or develop 
a transonic pattern (for large enough gravity). The oscillation pattern of sonic waves can be clearly 
appreciated in the numerical simulations if an adequate shock-capturing scheme is used for any value 
of the gravity. 

Two explicit second-order calculations have been made on a 1D geometry to illustrate this. The 
results are shown in Figures 12 and 13, where the evolution of the pressure at various heights (x  = 0, 
0.25, 0.5, 0.75 and 1) is plotted. The initial conditions for both cases were as described. Figure 12 
corresponds to a gravity value g = 0.0 1 and Figure 13 corresponds to g = 1. 

The necessary dissipation required to reach the hydrostatic pressure and density profile is provided 
in this case by the numerical viscosity of the semi-implicit numerical scheme, especially designed to 
smear out the sonic waves rapidly, retaining good accuracy for the convective signals. 

For the 2D annular domain test problem (2100 nodes) a moderate value of the gravitational 
acceleration has been selected, g = (0, - 0-5). The Mach number field for the annular domain problem 
is plotted at time t =  1.46 s in Figure 14. 

The convergence curves for the seven iterative schemes under analysis for a typical time step of this 
test case are plotted in Figure 15. The results are summarized in Table IV 
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Figure 12. ID stratification problem: g =  0.01 

Figure 13. 1 D stratification problem: g = 1 

One can clearly distinguish in Figure 15 the two slopes in the convergence curves corresponding to 
the ILU-preconditioned algorithm family and the weakly conditioned or non-conditioned algorithms. 
In terms of CPU time the GMRES-diagonal and Broyden-diagonal methods are found to be too 
expensive. The Gauss-Seidel method is around two to three times more expensive than the ILU- 
preconditioned methods. Among the latter, the best-performing method in this case is the Broyden 
quasi-Newton method. Among the gradient methods, CGS behaves better than GMRES, which 
exhibits an even greater computational cost per iteration than CGS. This tends to show that the 
additional cost of the second back-substitution in the CGS method is compensated, for relatively large 
cases like this (6300 degrees of freedom), by the number of auxiliary operations (Gram-Schmidt 
orthogonalizations, Givens rotation processes, etc.) required in the GMRES method. 
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mo 

Figure 14. Problem 3.2.2: Mach number field at f=0.146 s 

Figure 15. Convergence curves for problem 3.2.2 

Table I\! Summary of test 3.2.2 

GMRES-ILU Broyden-ILU CGS-ILU GMRES- Broyden- Gauss-Seidel Jacobi 

2100 24 iter. 25 iter. 24 itr. 254 iter. 349 iter. 258 iter. 350 iter. 

diagonal diagonal 

nodes 27 s 14 s 19 s 160 s 124 s 63 s 95 s 
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3.2.3. Test case 3. convection of a density wave in a two-component mixture. The third test problem 
concerning the multicomponent Euler equations consists of the simple 2D convection of the density 
peak of a gas A in a background gas B within a squared computational domain by a constant, 
externally imposed velocity field. Both gases have y = 1-4. The problem is physically very similar to 
the test case 3.1.1 but is governed now by a system of partial differential equations. In this case the 
uniform velocity field results as the solution at each time step of the momentum conservation equation. 
The computational grid is a triangulation of the unit square by a 60 x 60 element pattern, yielding a 
total number of degrees of freedom equal to 11,163. The convergence curves for the seven analysed 
methods are shown in Figure 16, while the number of iterations and the required CPU time to reach 
convergence are given in Table V 

The aim of this test was to treat a relatively large case of a purely convective flow where the ‘fast’ 
characteristics associated with pressure waves were not relevant. Comparing the results obtained for 
this case with those corresponding to the preceding test problem, the most noticeable fact is that even 
when the system size is larger, the convergence of all the methods is much faster both in terms of 
iterations as well as in terms of CPU time. 

These results show that the Gauss-Seidel method is the most efficient in this case, followed by the 
Broyden-ILU method. Note also that the CGS-ILU method is the most efficient solely in terms of 
iterations. 

Figure 16. Convergence curves for problem 3.2.3 

Table V: Summary of test 3.2.3 

GMRES-ILU Broyden-ILU CGS-ILU GMRES- Broyden- Gauss-Seidel Jacobi 
diagonal diagonal 

3721 7 iter. 6 iter. 5 iter. 25 iter. 24 iter. 18 iter. 27 iter. 
nodes 9.5 s 7.9 s 9.3 s 18.8 s 14.3 s 6.5 s 12.4 s 
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With respect to the preceding test case the Gauss-Seidel improvement ratio in CPU time is 
63 s16.5 s = 9.7, while those corresponding to the Broyden-ILU, CGS-ILU and GMRES-ILU 
methods are 14 sl7.9 s = 1.77, 19 s19.3 s =2.04 and 27 sJ9.5 s =  2.84 respectively. 

The conclusion is that for purely convective problems in which the matrix eigenvalues are not spread 
within a large range, the Gauss-Seidel method seems to become relatively more competitive with 
respect to the ILU-preconditioned gradient and Newton methods, whose performance is less sensitive 
(owing to the preconditioning process) to the spectral structure of the system matrix. These results are 
in agreement with what was observed in the test cases for the scalar advection-diffision equation. The 
role played there by the viscosity in representing fast phenomena has been undertaken in the present 
problem by the sonic phenomena (pressure waves). 

3.2.4. Test case 4: buoyancy-induced bubble motion. This last problem has been included as an 
example of an extremely badly conditioned system. It corresponds to a case with very low Mach 
number. The computational domain is a square with 10 m side, filled with a heavy gas ( y  = 1.28). In 
the lower left corner a bubble of a light gas ( y  = 1.4) is initially placed. All the boundaries are supposed 
closed. The initial pressure and temperahw are 5 x lo4 Pa and 273 K. From t= 0 the difference in 
densities induces motion of the bubble. The characeristic Mach number of this flow is around 
The velocity field at two instants is shown in Figure 17. 

The main difficulty associated with this problem consists of the uncoupling between the energy field 
and the velocity field. For such a low Mach number the kinetic energy of the particles is almost 
negligible with respect to the internal energy of the fluid, which is linked to the pressure through the 

Figure 17. Problem 3.2.4: velocity fields at t =  10 (top) and r=30 (bottom) 
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Figure 18. Convergence curves for problem 3.2.4 

Table VI. Summary of test 3.2.4 

GMRES-ILU Broyden-ILU CGS-ILU GMRES- Broyden- Gauss-Seidel Jacobi 
diagonal diagonal 

~ 

372 1 21 iter. 154 iter. 68 iter. 132 iter. Diverges 400-NC 400-NC 
nodes 29 s 139 s 557 s 99 s 

~ 

state equation. However, the pressure gradient (due mainly to the density gradient) induces fluid 
motion through the momentum equation. The velocity field has become almost a divergence-free field, 
coupled with the energy equation only indirectly though the density variations. For such a low-Mach 
number situation the compressible, multicomponent Euler equations are no longer adequate and a 
better representation to model this problem would be a multicomponent, incompressible approach 
where the closure relation provided by the equation of state p =f(pl ,  . . ., pr, e) is replaced by the 
solenoidal condition for the velocity, V-u = 0. 

The convergence curves are obtained for this problem are shown in Figure 18 and reflect the 
numerical stiffness of the problem. The results are summarized in Table VI. 

These results put in evidence the stiffness of the problem under consideration. None of the methods 
is able to reduce the logarithmic error measure below about lop5, with the exception of the GMRES- 
ILU method which yields an error of about 5 x in 21 iterations. For the other ILU- 
preconditioned techniques the convergence criterion has been relaxed to E = lo-’. The Broyden-ILU 
method exhibits an extremely irregular convergence path (in fact, from iteration 70 to 154 it does not 
yield any significant improvement in the solution). The CGS-ILU method converges more smoothly in 
68 iterations, but the price to pay (two back-substitutions at each iteration level) makes its 
computational cost extremely high with respect to the other two methods. Another interesting fact is 
that the GMRES4iagonal method succeeds in reaching convergence within 132 interations and 99 s, 
with quite a smooth convergence path. The error reaches a plateau of low4 in about 80 iterations and 
remains more or less constant up to iteration 110, where the curve again takes a smooth negative slope 
to reach convergence at iteration 132. These results seem to show a relative advantage in terms of 
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algorithmic robustness for the GMRES methods with respect to the Broyden method in the presence of 
extremely badly conditioned matrices. 

4. CONCLUSIONS 

Let us recall that the aim of this work was to identify adequate solution schemes to treat the linear 
systems of equations arising from an implicit (or semi-implicit) time integration scheme (combined 
with an unstructured finite volume spatial discretization) applied to hyperbolic problems where a 
parabolic operator is present or where parts of the characteristics signals have fast propagating speeds 
that induce a certain degree of numerical sttfness in the problem. Some recent and sophisticated 
iterative methods (GMRES and CGS) from the gradient algorithm family have been compared with a 
quasi-Newton method (Broyden) as well as with standard rehation methods (Gauss-Seidel and 
Jacobi). The main conclusions that can be drawn from the numerical tests presented in this paper can 
be summarized as follows. 

The most eficient iterative schemes have been found in the combination of the gradient (GMRES 
and CGS) and Newton methods with a relatively good preconditioning technique (incomplete lower- 
upper decomposition). The use of these iterative methods in combination with a weak preconditioning 
technique is not competitive in terms of CPU time with the other tested techniques and should be 
avoided. However, it is underlined that standard relaxation methods (mainly the Gauss-Seidel method) 
perform remarkably well in most of the analysed tests. 

The relative CPU time advantage observed for the ILU-preconditioned gradient and Newton 
methods with respect to the Gauss-Seidel method tends to disappear when the discretized physical 
problem loses its fast characteristic part (either its viscous or sonic character). Indeed, for pure 
convection problems the Gauss-Seidel method becomes an efficient alternative to the ILU- 
preconditioned gradient and Newton methods, but the performance of the former is much more 
dependent on the spectral pattern of the system matrix than that of the latter. 

The comparison among the GMRES-ILU, CGS-ILU and Broyden-ILU methods reveals a slight 
advantage for the last one in terms of CPU time and number of iterations. Second in this ranking would 
be the GMRES-ILU method. The comparative advantage (in terms of CPU time) of the GMRES-ILU 
method with respect to the CGS-ILU method (due to the double back-substitution at each iteration 
level in the latter) seems to disappear as the problem size increases. 

Concerning the algorithmic complexi& CGS-ILU and Broyden-ILU have an easier practical 
implementation than GMRES-ILU. 

In addition, the convergence curves of CGS-ILU seem to be smoother, thus suggesting a greater 
robustness of the algorithm when compared with GMRES-ILU or Broyden-ILU. 

These conclusions are somewhat disappointing, since it is impossible to establish a clear 
recommendation. It seems that a good preconditioner is mandatory to make the gradient and Newton 
schemes perform optimally. According to our experience, a computer programme aiming at treating a 
wide range of applications should be supplied with a variety of system solver techniques. Among 
these, one should select at least two well-preconditioned schemes (possibly Broyden and GMRES). On 
the other hand, for convection-dominated flows the Gauss-Seidel method, which is simple to 
implement and is present in many linear algebra packages, is very competitive and should also be 
retained. 

Although not explored here, a large variety of ILU-like preconditioning methods are also offered to 
the code designer. A simple technique that could allow for significant CPU time savings would consist 
of freezing a given ILU decomposition for a number of time steps and updating it only when 
convergence difficulties are detected. This would permit one to avoid (at least partially) the 
computational cost of the incomplete factorization at each time step calculation. 
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The situation in which the matrix handling becomes impracticable (owing to the number of degrees 
of freedom, typically for 3D flows) would probably change this scenario. More sophisticated 
techniques, possibly based upon multigrid schemes, allowing a parallel treatment would then be 
required, but this goes beyond the scope of this work. 
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